Using the interface Peclet number to select the maximum simulation interface width in phase-field solidification modelling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the interface Peclet number to select the maximum simulation interface width in phase-field solidification modelling

This study investigates the use of interface Peclet number P = w/(Dl/Vtip), to determine the interface width (w) used in phase-field simulations, where Dl is the liquid diffusivity and Vtip is the tip velocity. The maximum simulation interface width (wmax) under varied growth conditions was analysed via convergence analysis and it was found that there is a limit of P for the maximum interface w...

متن کامل

Towards a 3-Dimensional Phase-Field Model of Dendritic Solidification with Physically Realistic Interface Width

We review the application of advanced numerical techniques such as adaptive mesh refinement, implicit time-stepping, multigrid solvers and massively parallel implementations as a route to obtaining solutions to the 3-dimensional phase-field problem with a domain size and interface resolution previously possible only in 2-dimensions. Using such techniques it is shown that such models are tractab...

متن کامل

Quantitative Phase-Field Modelling of Solidification at High Lewis Number

A phase-field model of non-isothermal solidification in dilute binary alloys is used to study the variation of growth velocity, dendrite tip radius and radius selection parameter as a function of Lewis number at fixed undercooling. By the application of advanced numerical techniques we have been able, for the first time, to extend the analysis to Lewis numbers of order 10000, which are realisti...

متن کامل

Phase-field Simulation of Dendritic Solidification

We consider the solidi cation of a pure material from its undercooled melt, taking into account e ects of surface tension, kinetic undercooling and crystalline anisotropy. The classical mathematical formulation consists of two heat equations coupled with boundary conditions prescribed at the moving solid-liquid interface. Analytic solutions are known only for a few special cases. Since the prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Materials Science

سال: 2013

ISSN: 0927-0256

DOI: 10.1016/j.commatsci.2012.12.030